p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.255C23, C4⋊C4.77D4, (C2×C8).193D4, (C2×Q8).64D4, C8⋊4Q8.9C2, C8⋊2C8.11C2, C4⋊C8.37C22, C4.Q16.8C2, C4⋊Q8.76C22, C4.110(C4○D8), (C4×C8).288C22, Q8⋊Q8.11C2, C4.10D8.9C2, C4.6Q16.8C2, (C4×Q8).52C22, C2.11(C8.D4), C4.47(C8.C22), C4.SD16.13C2, C2.23(D4.3D4), C2.15(Q8.D4), C22.216(C4⋊D4), (C2×C4).40(C4○D4), (C2×C4).1290(C2×D4), SmallGroup(128,436)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.255C23
G = < a,b,c,d,e | a4=b4=1, c2=a2, d2=a-1b2, e2=b2, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, dcd-1=a-1c, ece-1=bc, ede-1=a2d >
Subgroups: 144 in 70 conjugacy classes, 32 normal (all characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4⋊Q8, C4.10D8, C4.6Q16, C8⋊2C8, C8⋊4Q8, Q8⋊Q8, C4.Q16, C4.SD16, C42.255C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C4○D8, C8.C22, Q8.D4, C8.D4, D4.3D4, C42.255C23
Character table of C42.255C23
| class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
| ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
| ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
| ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
| ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
| ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
| ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
| ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
| ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
| ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
| ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
| ρ15 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | √2 | -√-2 | -√2 | 0 | 0 | √-2 | complex lifted from C4○D8 |
| ρ16 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | -√2 | -√-2 | √2 | 0 | 0 | √-2 | complex lifted from C4○D8 |
| ρ17 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | -√2 | √-2 | √2 | 0 | 0 | -√-2 | complex lifted from C4○D8 |
| ρ18 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | √2 | √-2 | -√2 | 0 | 0 | -√-2 | complex lifted from C4○D8 |
| ρ19 | 4 | -4 | -4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
| ρ20 | 4 | -4 | 4 | -4 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
| ρ21 | 4 | -4 | 4 | -4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
| ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 0 | 0 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
| ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 0 | 0 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 20 5 24)(2 21 6 17)(3 22 7 18)(4 23 8 19)(9 41 13 45)(10 42 14 46)(11 43 15 47)(12 44 16 48)(25 56 29 52)(26 49 30 53)(27 50 31 54)(28 51 32 55)(33 122 37 126)(34 123 38 127)(35 124 39 128)(36 125 40 121)(57 74 61 78)(58 75 62 79)(59 76 63 80)(60 77 64 73)(65 104 69 100)(66 97 70 101)(67 98 71 102)(68 99 72 103)(81 118 85 114)(82 119 86 115)(83 120 87 116)(84 113 88 117)(89 106 93 110)(90 107 94 111)(91 108 95 112)(92 109 96 105)
(1 61 22 80)(2 62 23 73)(3 63 24 74)(4 64 17 75)(5 57 18 76)(6 58 19 77)(7 59 20 78)(8 60 21 79)(9 106 43 95)(10 107 44 96)(11 108 45 89)(12 109 46 90)(13 110 47 91)(14 111 48 92)(15 112 41 93)(16 105 42 94)(25 100 50 67)(26 101 51 68)(27 102 52 69)(28 103 53 70)(29 104 54 71)(30 97 55 72)(31 98 56 65)(32 99 49 66)(33 86 124 117)(34 87 125 118)(35 88 126 119)(36 81 127 120)(37 82 128 113)(38 83 121 114)(39 84 122 115)(40 85 123 116)
(1 81 5 85)(2 119 6 115)(3 87 7 83)(4 117 8 113)(9 71 13 67)(10 103 14 99)(11 69 15 65)(12 101 16 97)(17 86 21 82)(18 116 22 120)(19 84 23 88)(20 114 24 118)(25 95 29 91)(26 105 30 109)(27 93 31 89)(28 111 32 107)(33 79 37 75)(34 59 38 63)(35 77 39 73)(36 57 40 61)(41 98 45 102)(42 72 46 68)(43 104 47 100)(44 70 48 66)(49 96 53 92)(50 106 54 110)(51 94 55 90)(52 112 56 108)(58 122 62 126)(60 128 64 124)(74 125 78 121)(76 123 80 127)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 25 22 50)(2 30 23 55)(3 27 24 52)(4 32 17 49)(5 29 18 54)(6 26 19 51)(7 31 20 56)(8 28 21 53)(9 81 43 120)(10 86 44 117)(11 83 45 114)(12 88 46 119)(13 85 47 116)(14 82 48 113)(15 87 41 118)(16 84 42 115)(33 96 124 107)(34 93 125 112)(35 90 126 109)(36 95 127 106)(37 92 128 111)(38 89 121 108)(39 94 122 105)(40 91 123 110)(57 71 76 104)(58 68 77 101)(59 65 78 98)(60 70 79 103)(61 67 80 100)(62 72 73 97)(63 69 74 102)(64 66 75 99)
G:=sub<Sym(128)| (1,20,5,24)(2,21,6,17)(3,22,7,18)(4,23,8,19)(9,41,13,45)(10,42,14,46)(11,43,15,47)(12,44,16,48)(25,56,29,52)(26,49,30,53)(27,50,31,54)(28,51,32,55)(33,122,37,126)(34,123,38,127)(35,124,39,128)(36,125,40,121)(57,74,61,78)(58,75,62,79)(59,76,63,80)(60,77,64,73)(65,104,69,100)(66,97,70,101)(67,98,71,102)(68,99,72,103)(81,118,85,114)(82,119,86,115)(83,120,87,116)(84,113,88,117)(89,106,93,110)(90,107,94,111)(91,108,95,112)(92,109,96,105), (1,61,22,80)(2,62,23,73)(3,63,24,74)(4,64,17,75)(5,57,18,76)(6,58,19,77)(7,59,20,78)(8,60,21,79)(9,106,43,95)(10,107,44,96)(11,108,45,89)(12,109,46,90)(13,110,47,91)(14,111,48,92)(15,112,41,93)(16,105,42,94)(25,100,50,67)(26,101,51,68)(27,102,52,69)(28,103,53,70)(29,104,54,71)(30,97,55,72)(31,98,56,65)(32,99,49,66)(33,86,124,117)(34,87,125,118)(35,88,126,119)(36,81,127,120)(37,82,128,113)(38,83,121,114)(39,84,122,115)(40,85,123,116), (1,81,5,85)(2,119,6,115)(3,87,7,83)(4,117,8,113)(9,71,13,67)(10,103,14,99)(11,69,15,65)(12,101,16,97)(17,86,21,82)(18,116,22,120)(19,84,23,88)(20,114,24,118)(25,95,29,91)(26,105,30,109)(27,93,31,89)(28,111,32,107)(33,79,37,75)(34,59,38,63)(35,77,39,73)(36,57,40,61)(41,98,45,102)(42,72,46,68)(43,104,47,100)(44,70,48,66)(49,96,53,92)(50,106,54,110)(51,94,55,90)(52,112,56,108)(58,122,62,126)(60,128,64,124)(74,125,78,121)(76,123,80,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,25,22,50)(2,30,23,55)(3,27,24,52)(4,32,17,49)(5,29,18,54)(6,26,19,51)(7,31,20,56)(8,28,21,53)(9,81,43,120)(10,86,44,117)(11,83,45,114)(12,88,46,119)(13,85,47,116)(14,82,48,113)(15,87,41,118)(16,84,42,115)(33,96,124,107)(34,93,125,112)(35,90,126,109)(36,95,127,106)(37,92,128,111)(38,89,121,108)(39,94,122,105)(40,91,123,110)(57,71,76,104)(58,68,77,101)(59,65,78,98)(60,70,79,103)(61,67,80,100)(62,72,73,97)(63,69,74,102)(64,66,75,99)>;
G:=Group( (1,20,5,24)(2,21,6,17)(3,22,7,18)(4,23,8,19)(9,41,13,45)(10,42,14,46)(11,43,15,47)(12,44,16,48)(25,56,29,52)(26,49,30,53)(27,50,31,54)(28,51,32,55)(33,122,37,126)(34,123,38,127)(35,124,39,128)(36,125,40,121)(57,74,61,78)(58,75,62,79)(59,76,63,80)(60,77,64,73)(65,104,69,100)(66,97,70,101)(67,98,71,102)(68,99,72,103)(81,118,85,114)(82,119,86,115)(83,120,87,116)(84,113,88,117)(89,106,93,110)(90,107,94,111)(91,108,95,112)(92,109,96,105), (1,61,22,80)(2,62,23,73)(3,63,24,74)(4,64,17,75)(5,57,18,76)(6,58,19,77)(7,59,20,78)(8,60,21,79)(9,106,43,95)(10,107,44,96)(11,108,45,89)(12,109,46,90)(13,110,47,91)(14,111,48,92)(15,112,41,93)(16,105,42,94)(25,100,50,67)(26,101,51,68)(27,102,52,69)(28,103,53,70)(29,104,54,71)(30,97,55,72)(31,98,56,65)(32,99,49,66)(33,86,124,117)(34,87,125,118)(35,88,126,119)(36,81,127,120)(37,82,128,113)(38,83,121,114)(39,84,122,115)(40,85,123,116), (1,81,5,85)(2,119,6,115)(3,87,7,83)(4,117,8,113)(9,71,13,67)(10,103,14,99)(11,69,15,65)(12,101,16,97)(17,86,21,82)(18,116,22,120)(19,84,23,88)(20,114,24,118)(25,95,29,91)(26,105,30,109)(27,93,31,89)(28,111,32,107)(33,79,37,75)(34,59,38,63)(35,77,39,73)(36,57,40,61)(41,98,45,102)(42,72,46,68)(43,104,47,100)(44,70,48,66)(49,96,53,92)(50,106,54,110)(51,94,55,90)(52,112,56,108)(58,122,62,126)(60,128,64,124)(74,125,78,121)(76,123,80,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,25,22,50)(2,30,23,55)(3,27,24,52)(4,32,17,49)(5,29,18,54)(6,26,19,51)(7,31,20,56)(8,28,21,53)(9,81,43,120)(10,86,44,117)(11,83,45,114)(12,88,46,119)(13,85,47,116)(14,82,48,113)(15,87,41,118)(16,84,42,115)(33,96,124,107)(34,93,125,112)(35,90,126,109)(36,95,127,106)(37,92,128,111)(38,89,121,108)(39,94,122,105)(40,91,123,110)(57,71,76,104)(58,68,77,101)(59,65,78,98)(60,70,79,103)(61,67,80,100)(62,72,73,97)(63,69,74,102)(64,66,75,99) );
G=PermutationGroup([[(1,20,5,24),(2,21,6,17),(3,22,7,18),(4,23,8,19),(9,41,13,45),(10,42,14,46),(11,43,15,47),(12,44,16,48),(25,56,29,52),(26,49,30,53),(27,50,31,54),(28,51,32,55),(33,122,37,126),(34,123,38,127),(35,124,39,128),(36,125,40,121),(57,74,61,78),(58,75,62,79),(59,76,63,80),(60,77,64,73),(65,104,69,100),(66,97,70,101),(67,98,71,102),(68,99,72,103),(81,118,85,114),(82,119,86,115),(83,120,87,116),(84,113,88,117),(89,106,93,110),(90,107,94,111),(91,108,95,112),(92,109,96,105)], [(1,61,22,80),(2,62,23,73),(3,63,24,74),(4,64,17,75),(5,57,18,76),(6,58,19,77),(7,59,20,78),(8,60,21,79),(9,106,43,95),(10,107,44,96),(11,108,45,89),(12,109,46,90),(13,110,47,91),(14,111,48,92),(15,112,41,93),(16,105,42,94),(25,100,50,67),(26,101,51,68),(27,102,52,69),(28,103,53,70),(29,104,54,71),(30,97,55,72),(31,98,56,65),(32,99,49,66),(33,86,124,117),(34,87,125,118),(35,88,126,119),(36,81,127,120),(37,82,128,113),(38,83,121,114),(39,84,122,115),(40,85,123,116)], [(1,81,5,85),(2,119,6,115),(3,87,7,83),(4,117,8,113),(9,71,13,67),(10,103,14,99),(11,69,15,65),(12,101,16,97),(17,86,21,82),(18,116,22,120),(19,84,23,88),(20,114,24,118),(25,95,29,91),(26,105,30,109),(27,93,31,89),(28,111,32,107),(33,79,37,75),(34,59,38,63),(35,77,39,73),(36,57,40,61),(41,98,45,102),(42,72,46,68),(43,104,47,100),(44,70,48,66),(49,96,53,92),(50,106,54,110),(51,94,55,90),(52,112,56,108),(58,122,62,126),(60,128,64,124),(74,125,78,121),(76,123,80,127)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,25,22,50),(2,30,23,55),(3,27,24,52),(4,32,17,49),(5,29,18,54),(6,26,19,51),(7,31,20,56),(8,28,21,53),(9,81,43,120),(10,86,44,117),(11,83,45,114),(12,88,46,119),(13,85,47,116),(14,82,48,113),(15,87,41,118),(16,84,42,115),(33,96,124,107),(34,93,125,112),(35,90,126,109),(36,95,127,106),(37,92,128,111),(38,89,121,108),(39,94,122,105),(40,91,123,110),(57,71,76,104),(58,68,77,101),(59,65,78,98),(60,70,79,103),(61,67,80,100),(62,72,73,97),(63,69,74,102),(64,66,75,99)]])
Matrix representation of C42.255C23 ►in GL6(𝔽17)
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 15 | 0 | 0 |
| 0 | 0 | 1 | 16 | 0 | 0 |
| 0 | 0 | 0 | 16 | 0 | 1 |
| 0 | 0 | 1 | 16 | 16 | 0 |
| 1 | 15 | 0 | 0 | 0 | 0 |
| 1 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 15 | 0 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 4 | 13 | 13 | 13 |
| 0 | 0 | 0 | 0 | 0 | 13 |
| 0 | 0 | 0 | 0 | 13 | 0 |
| 0 | 0 | 0 | 13 | 0 | 0 |
| 13 | 0 | 0 | 0 | 0 | 0 |
| 0 | 13 | 0 | 0 | 0 | 0 |
| 0 | 0 | 7 | 10 | 12 | 10 |
| 0 | 0 | 7 | 11 | 11 | 16 |
| 0 | 0 | 7 | 10 | 0 | 10 |
| 0 | 0 | 0 | 11 | 1 | 16 |
| 0 | 7 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 15 | 0 |
| 0 | 0 | 0 | 0 | 16 | 1 |
| 0 | 0 | 0 | 0 | 16 | 0 |
| 0 | 0 | 0 | 1 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,15,16,16,16,0,0,0,0,0,16,0,0,0,0,1,0],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,4,0,0,0,0,0,13,0,0,13,0,0,13,0,13,0,0,0,13,13,0,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,7,7,7,0,0,0,10,11,10,11,0,0,12,11,0,1,0,0,10,16,10,16],[0,12,0,0,0,0,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,15,16,16,16,0,0,0,1,0,0] >;
C42.255C23 in GAP, Magma, Sage, TeX
C_4^2._{255}C_2^3 % in TeX
G:=Group("C4^2.255C2^3"); // GroupNames label
G:=SmallGroup(128,436);
// by ID
G=gap.SmallGroup(128,436);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,736,422,387,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=a^2,d^2=a^-1*b^2,e^2=b^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e^-1=b*c,e*d*e^-1=a^2*d>;
// generators/relations
Export